You are currently viewing What is the integral of sec(x)?
integral of sec(x)

What is the integral of sec(x)?

The integral of \sec(x) is \ln \lvert \sec(x) + \tan(x) \rvert + C.

Proof. This integral is more difficult to approach directly. We need to multiply \sec(x) with the fraction \frac{\sec(x) + \tan(x)}{\sec(x) + \tan(x)}. So we need to calculate the next integral:
\begin{align*}
\int \sec(x) dx = \int \frac{\sec(x)(\sec(x) + \tan(x))}{\sec(x) + \tan(x)} dx.
\end{align*}
We want to use the substitution method. Let u = \sec(x) + \tan(x). We know from here that \frac{d}{dx} \sec(x) = \sec(x)\tan(x) and here that \frac{d}{dx} \tan(x) = \sec^2(x). So we get:
\begin{align*}
\frac{du}{dx} = \sec(x)\tan(x) + \tan^2(x) \iff du = (\sec(x)\tan(x) + \tan^2(x))dx.
\end{align*}
Therefore, we get:
\begin{align*}
\int \sec(x) dx &= \int \frac{\sec(x)(\sec(x) + \tan(x))}{\sec(x) + \tan(x)} dx \\
&= \int \frac{\sec(x)\tan(x) + \tan^2(x)}{\sec(x) + \tan(x)} dx \\
&= \int \frac{du}{u} \\
&= \ln \lvert u \rvert + C \\
&= \ln \lvert \sec(x) + \tan(x) \rvert + C.
\end{align*}
Therefore, the integral of \sec(x) is \ln \lvert \sec(x) + \tan(x) \rvert + C.

Leave a Reply