You are currently viewing What is the Derivative of sec^2(x)?
derivative of sec^2(x)

What is the Derivative of sec^2(x)?

The derivative of sec2(x)\sec^2(x) is 2tan(x)sec2(x)2\tan(x)\sec^2(x).

Solution. Let F(x)=sec2(x)F(x) = \sec^2(x), f(u)=u2f(u) = u^2 and g(x)=sec(x)g(x) = \sec(x). Then we will apply the chain rule:
F(x)=f(g(x))g(x).\begin{align*} F'(x) = f'(g(x))g'(x). \end{align*}
We have seen here that ddxsec(x)=tan(x)sec(x)\frac{d}{dx} \sec(x) = \tan(x)\sec(x). So we get:
f(u)=2uandg(x)=tan(x)sec(x).\begin{align*} f'(u) = 2u \quad \text{and} \quad g'(x) = \tan(x)\sec(x). \end{align*}
Combining everything, we get:
F(x)=f(g(x))g(x)=2sec(x)tan(x)sec(x)=2tan(x)sec2(x).\begin{align*} F'(x) &= f'(g(x))g'(x) \\ &= 2\sec(x)\tan(x)\sec(x) \\ &= 2\tan(x)\sec^2(x). \end{align*}
Therefore, the derivative of sec2(x)\sec^2(x) is 2tan(x)sec2(x)2\tan(x)\sec^2(x).

Leave a Reply