The derivative of
sec2(x) is
2tan(x)sec2(x).
Solution. Let
F(x)=sec2(x),
f(u)=u2 and
g(x)=sec(x). Then we will apply the chain rule:
F′(x)=f′(g(x))g′(x).
We have seen
here that
dxdsec(x)=tan(x)sec(x). So we get:
f′(u)=2uandg′(x)=tan(x)sec(x).
Combining everything, we get:
F′(x)=f′(g(x))g′(x)=2sec(x)tan(x)sec(x)=2tan(x)sec2(x).
Therefore, the derivative of
sec2(x) is
2tan(x)sec2(x).