Solution. Let h(x) = \ln^2(x), f(u) = u^2 and g(x) = \ln(x). The chain rule will be the most straightforward property to use:
\begin{align*} h'(x) = f'(g(x))g'(x). \end{align*}
\begin{align*} f'(u) = 2u \quad \text{and} \quad g'(x) = \frac{1}{x}. \end{align*}
\begin{align*} h'(x) &= f'(g(x))g'(x) \\ &= 2\ln(x) \frac{1}{x} \\ &= \frac{2\ln(x)}{x}. \end{align*}