Solution. Let F(x) = \csc^2(x), f(u) = u^2 and g(x) = \csc(x) such that
\begin{align*}
F(x) = f(g(x)).
\end{align*}\begin{align*}
F'(x) = f'(g(x))g'(x).
\end{align*}\begin{align*}
f'(g(x)) = 2g(x) = 2\csc(x) \quad \text{and} \quad g'(x) = -\csc(x)\cot(x).
\end{align*}\begin{align*}
F'(x) &= f'(g(x))g'(x) \\
&= 2\csc(x) \cdot (-\csc(x)\cot(x)) \\
&= -2\csc^2(x)\cot(x).
\end{align*}