If p divides n, then p-1 divides phi(n)

Let pp be a prime number. If pnp \mid n, then p1ϕ(n)p - 1 \mid \phi(n).

Proof. We need to prove that if pp divides nn, then p1p-1 divides the Euler’s totient function of nn. Assume that pnp \mid n. Then n=pαcn = p^{\alpha}c for some integer cc and positive integer α\alpha where pp doesn’t divide cc. Now since pcp \nmid c, this implies that gcd(pα,c)=1gcd(p^{\alpha},c) = 1. Since the Euler’s totient function is multiplicative, we can apply that ϕ(pαc)=ϕ(pα)ϕ(c)\phi(p^{\alpha}c) = \phi(p^{\alpha})\phi(c). So together, we get
ϕ(n)=ϕ(pαc) since n=pαc=ϕ(pm)ϕ(c) since gcd(pα,c)=1=pα1(p1)ϕ(c).\begin{align*} \phi(n) &= \phi(p^{\alpha}c) \quad \quad \text{ since } n = p^{\alpha}c \\ &=\phi(p^m)\phi(c) \quad \text{ since } gcd(p^{\alpha},c) = 1 \\ &= p^{\alpha - 1}(p-1)\phi(c). \end{align*}
So since ϕ(n)=pα1(p1)ϕ(c)\phi(n) = p^{\alpha - 1}(p-1)\phi(c), we have that p1ϕ(n)p - 1 \mid \phi(n).

Leave a Reply