Proof. We know that
\begin{equation*}
S_3 = \{e,(12),(13),(23),(123),(132)\}.
\end{equation*}\begin{align*}
eee &= e \\
(12)e(21) &= e \\
(13)e(31) &= e \\
(23)e(32) &= e \\
(123)e(321) &= e \\
(132)e(231) &= e \\
\end{align*}\begin{align*}
e(12)e &= (12) \\
(12)(12)(21) &= (12) \\
(13)(12)(31) &= (23) \\
(23)(12)(32) &= (13) \\
(123)(12)(321) &= (23) \\
(132)(12)(231) &= (13) \\
\end{align*}\begin{align*}
e(13)e &= (13) \\
(12)(13)(21) &= (23) \\
(13)(13)(31) &= (13) \\
(23)(13)(32) &= (12) \\
(123)(13)(321) &= (12) \\
(132)(13)(231) &= (23) \\
\end{align*}\begin{align*}
e(23)e &= (23) \\
(12)(23)(21) &= (13) \\
(13)(23)(31) &= (12) \\
(23)(23)(32) &= (23) \\
(123)(23)(321) &= (13) \\
(132)(23)(231) &= (12) \\
\end{align*}\begin{align*}
e(123)e &= (123) \\
(12)(123)(21) &= (132) \\
(13)(123)(31) &= (132) \\
(23)(123)(32) &= (132) \\
(123)(123)(321) &= (123) \\
(132)(123)(231) &= (123) \\
\end{align*}\begin{align*}
e(132)e &= (132) \\
(12)(132)(21) &= (123) \\
(13)(132)(31) &= (123) \\
(23)(132)(32) &= (123) \\
(123)(132)(321) &= (132) \\
(132)(132)(231) &= (132) \\
\end{align*}\begin{equation*}
\{e\}, \{(12),(13),(23)\}, \{(123),(132)\}
\end{equation*}