You are currently viewing What are the Conjugacy Classes of S3
Conjugacy classes of S3

What are the Conjugacy Classes of S3

What are the conjugate classes of S_3

Proof. We know that
\begin{equation*}
S_3 = \{e,(12),(13),(23),(123),(132)\}. 
\end{equation*}
To determine the conjugates of the element \tau \in S_3, we need to show that \sigma \tau \sigma^{-1} for all \sigma \in S_3. So we will check one by one the conjugates of the elements of the symmetric group S_3: \tau = e
\begin{align*}
eee &= e \\ 
(12)e(21) &= e \\ 
(13)e(31) &= e \\ 
(23)e(32) &= e \\ 
(123)e(321) &= e \\ 
(132)e(231) &= e \\ 
\end{align*}
\tau = (12)
\begin{align*}
e(12)e &= (12) \\ 
(12)(12)(21) &= (12) \\ 
(13)(12)(31) &= (23) \\ 
(23)(12)(32) &= (13) \\ 
(123)(12)(321) &= (23) \\ 
(132)(12)(231) &= (13) \\ 
\end{align*}
\tau = (13)
\begin{align*}
e(13)e &= (13) \\ 
(12)(13)(21) &= (23) \\ 
(13)(13)(31) &= (13) \\ 
(23)(13)(32) &= (12) \\ 
(123)(13)(321) &= (12) \\ 
(132)(13)(231) &= (23) \\ 
\end{align*}
\tau = (23)
\begin{align*}
e(23)e &= (23) \\ 
(12)(23)(21) &= (13) \\ 
(13)(23)(31) &= (12) \\ 
(23)(23)(32) &= (23) \\ 
(123)(23)(321) &= (13) \\ 
(132)(23)(231) &= (12) \\ 
\end{align*}
\tau = (123)
\begin{align*}
e(123)e &= (123) \\ 
(12)(123)(21) &= (132) \\ 
(13)(123)(31) &= (132) \\ 
(23)(123)(32) &= (132) \\ 
(123)(123)(321) &= (123) \\ 
(132)(123)(231) &= (123) \\ 
\end{align*}
\tau = (132)
\begin{align*}
e(132)e &= (132) \\ 
(12)(132)(21) &= (123) \\ 
(13)(132)(31) &= (123) \\ 
(23)(132)(32) &= (123) \\ 
(123)(132)(321) &= (132) \\ 
(132)(132)(231) &= (132) \\ 
\end{align*}
We see that we have the next conjugacy classes of S_3:
\begin{equation*}
\{e\}, \{(12),(13),(23)\}, \{(123),(132)\}
\end{equation*}

Leave a Reply