The conjugacy classes of Q8 are {1}, {−1}, {i,−i}, {j,−j} and {k,−k}. Recall that
Q8={1,−1,i,−i,j,−j,k,−k}
where
(Q8,⋅) is a group with product operation,
1⋅a=a⋅1=1,
(−1)⋅a=a⋅(−1)=−1 for all
a∈Q8,
(−1)⋅(−1)=1 and
i⋅ii⋅jj⋅ik⋅i=j⋅j=k⋅k=−1=k,i⋅k=−j,=−k,j⋅k=i,=j,k⋅j=−j
Recall that to find the conjugacy classes, for each element of
Q8 say
a, we have to find all the element
σaσ−1 for all
σ∈Q8. This corresponds to a conjugacy class.
Proof. It is easily to see for 1 and -1 that we have the conjugacy classes
{−1} and
{1}. Now can do the rest:
a=i:
1⋅i⋅1(−1)⋅i⋅(−1)i⋅i⋅i(−i)⋅i⋅(−i)j⋅i⋅j(−j)⋅i⋅(−j)k⋅i⋅k(−k)⋅i⋅(−k)=i=i=−i=(−i)⋅1=−i=j⋅k=i=(−j)⋅(−k)=i=k⋅(−j)=i=(−k)⋅j=i
a=−i:
1⋅(−i)⋅1(−1)⋅(−i)⋅(−1)i⋅(−i)⋅i(−i)⋅(−i)⋅(−i)j⋅(−i)⋅j(−j)⋅(−i)⋅(−j)k⋅(−i)⋅k(−k)⋅(−i)⋅(−k)=−i=−i=i=(−i)⋅(−1)=i=j⋅(−k)=−i=(−j)⋅k=−i=k⋅j=−i=(−k)⋅(−j)=−i
So we have the conjugacy class
{i,−i}.
a=j:
1⋅j⋅1(−1)⋅j⋅(−1)i⋅j⋅i(−i)⋅j⋅(−i)j⋅j⋅j(−j)⋅j⋅(−j)k⋅j⋅k(−k)⋅j⋅(−k)=j=j=i⋅(−k)=j=(−i)⋅k=j=−j=−j=k⋅i=j=(−k)⋅(−i)=j
a=−j:
1⋅(−j)⋅1(−1)⋅(−j)⋅(−1)i⋅(−j)⋅i(−i)⋅(−j)⋅(−i)j⋅(−j)⋅j(−j)⋅(−j)⋅(−j)k⋅(−j)⋅k(−k)⋅(−j)⋅(−k)=−j=−j=i⋅k=−j=(−i)⋅(−k)=−j=j=j=k⋅(−i)=−j=(−k)⋅i=−j
So we have the conjugacy class
{j,−j}.
a=k:
1⋅k⋅1(−1)⋅k⋅(−1)i⋅k⋅i(−i)⋅k⋅(−i)j⋅k⋅j(−j)⋅k⋅(−j)k⋅k⋅k(−k)⋅k⋅(−k)=k=k=i⋅j=k=(−i)⋅(−j)=k=j⋅(−i)=k=(−j)⋅i=k=−k=−k
a=−k:
1⋅(−k)⋅1(−1)⋅(−k)⋅(−1)i⋅(−k)⋅i(−i)⋅(−k)⋅(−i)j⋅(−k)⋅j(−j)⋅(−k)⋅(−j)k⋅(−k)⋅k(−k)⋅(−k)⋅(−k)=−k=−k=i⋅(−j)=−k=(−i)⋅j=−k=j⋅i=−k=(−j)⋅(−i)=−k=k=k
So we have the conjugacy class
{k,−k}.
Conclusion: {1}, {−1}, {i,−i}, {j,−j} and {k,−k} are the conjugacy classes of the quaternion group Q8.