What are the Conjugacy Classes of Q8

The conjugacy classes of Q8 are {1}, {−1}, {i,−i}, {j,−j} and {k,−k}. Recall that
Q8={1,1,i,i,j,j,k,k}\begin{equation*} Q_8 = \{1,-1,i,-i,j,-j,k,-k\} \end{equation*}
where (Q8,)(Q_8, \cdot) is a group with product operation, 1a=a1=11 \cdot a = a \cdot 1 = 1, (1)a=a(1)=1(-1) \cdot a = a \cdot (-1) = -1 for all aQ8a \in Q_8, (1)(1)=1(-1)\cdot(-1) = 1 and
ii=jj=kk=1ij=k,ik=j,ji=k,jk=i,ki=j,kj=j\begin{align*} i \cdot i &= j \cdot j = k \cdot k = -1 \\ i \cdot j &= k, \quad i \cdot k = -j, \\ j \cdot i &= -k, \quad j \cdot k = i, \\ k \cdot i &= j, \quad k \cdot j = -j \end{align*}
Recall that to find the conjugacy classes, for each element of Q8Q_8 say aa, we have to find all the element σaσ1\sigma a\sigma^{-1} for all σQ8\sigma \in Q_8. This corresponds to a conjugacy class.

Proof. It is easily to see for 1 and -1 that we have the conjugacy classes {1}\{-1\} and {1}\{1\}. Now can do the rest: a=ia = i:
1i1=i(1)i(1)=iiii=i(i)i(i)=(i)1=ijij=jk=i(j)i(j)=(j)(k)=ikik=k(j)=i(k)i(k)=(k)j=i\begin{align*} 1 \cdot i \cdot 1 &= i \\ (-1) \cdot i \cdot (-1) &= i \\ i\cdot i \cdot i &= -i \\ (-i)\cdot i \cdot (-i) &= (-i)\cdot 1 = -i \\ j \cdot i \cdot j &= j\cdot k = i \\ (-j)\cdot i \cdot (-j) &= (-j)\cdot(-k) = i \\ k \cdot i \cdot k &= k \cdot (-j) = i \\ (-k)\cdot i \cdot (-k) &= (-k)\cdot j = i \\ \end{align*}
a=ia = -i:
1(i)1=i(1)(i)(1)=ii(i)i=i(i)(i)(i)=(i)(1)=ij(i)j=j(k)=i(j)(i)(j)=(j)k=ik(i)k=kj=i(k)(i)(k)=(k)(j)=i\begin{align*} 1 \cdot (-i) \cdot 1 &= -i \\ (-1) \cdot (-i) \cdot (-1) &= -i \\ i\cdot (-i) \cdot i &= i \\ (-i)\cdot (-i) \cdot (-i) &= (-i)\cdot (-1) = i \\ j \cdot (-i) \cdot j &= j\cdot (-k) = -i \\ (-j)\cdot (-i) \cdot (-j) &= (-j)\cdot k = -i \\ k \cdot (-i) \cdot k &= k \cdot j = -i \\ (-k)\cdot (-i) \cdot (-k) &= (-k)\cdot (-j) = -i \\ \end{align*}
So we have the conjugacy class {i,i}\{i,-i\}.

a=ja = j:
1j1=j(1)j(1)=jiji=i(k)=j(i)j(i)=(i)k=jjjj=j(j)j(j)=jkjk=ki=j(k)j(k)=(k)(i)=j\begin{align*} 1 \cdot j \cdot 1 &= j \\ (-1) \cdot j \cdot (-1) &= j \\ i\cdot j \cdot i &= i \cdot (-k) = j \\ (-i)\cdot j \cdot (-i) &= (-i)\cdot k = j \\ j \cdot j \cdot j &= -j \\ (-j)\cdot j \cdot (-j) &= -j \\ k \cdot j \cdot k &= k \cdot i = j \\ (-k)\cdot j \cdot (-k) &= (-k)\cdot (-i) = j \\ \end{align*}
a=ja = -j:
1(j)1=j(1)(j)(1)=ji(j)i=ik=j(i)(j)(i)=(i)(k)=jj(j)j=j(j)(j)(j)=jk(j)k=k(i)=j(k)(j)(k)=(k)i=j\begin{align*} 1 \cdot (-j) \cdot 1 &= -j \\ (-1) \cdot (-j) \cdot (-1) &= -j \\ i\cdot (-j) \cdot i &= i \cdot k = -j \\ (-i)\cdot (-j) \cdot (-i) &= (-i)\cdot (-k) = -j \\ j \cdot (-j) \cdot j &= j \\ (-j)\cdot (-j) \cdot (-j) &= j \\ k \cdot (-j) \cdot k &= k \cdot (-i) = -j \\ (-k)\cdot (-j) \cdot (-k) &= (-k)\cdot i = -j \\ \end{align*}
So we have the conjugacy class {j,j}\{j,-j\}.

a=ka = k:
1k1=k(1)k(1)=kiki=ij=k(i)k(i)=(i)(j)=kjkj=j(i)=k(j)k(j)=(j)i=kkkk=k(k)k(k)=k\begin{align*} 1 \cdot k \cdot 1 &= k \\ (-1) \cdot k \cdot (-1) &= k \\ i\cdot k \cdot i &= i \cdot j = k \\ (-i)\cdot k \cdot (-i) &= (-i)\cdot (-j) = k \\ j \cdot k \cdot j &= j \cdot (-i) = k \\ (-j)\cdot k \cdot (-j) &= (-j) \cdot i = k \\ k \cdot k \cdot k &= -k \\ (-k)\cdot k \cdot (-k) &= -k \\ \end{align*}
a=ka = -k:
1(k)1=k(1)(k)(1)=ki(k)i=i(j)=k(i)(k)(i)=(i)j=kj(k)j=ji=k(j)(k)(j)=(j)(i)=kk(k)k=k(k)(k)(k)=k\begin{align*} 1 \cdot (-k) \cdot 1 &= -k \\ (-1) \cdot (-k) \cdot (-1) &= -k \\ i\cdot (-k) \cdot i &= i \cdot (-j) = -k \\ (-i)\cdot (-k) \cdot (-i) &= (-i)\cdot j = -k \\ j \cdot (-k) \cdot j &= j \cdot i = -k \\ (-j)\cdot (-k) \cdot (-j) &= (-j) \cdot (-i) = -k \\ k \cdot (-k) \cdot k &= k \\ (-k)\cdot (-k) \cdot (-k) &= k \\ \end{align*}
So we have the conjugacy class {k,k}\{k,-k\}. Conclusion: {1}, {−1}, {i,−i}, {j,−j} and {k,−k} are the conjugacy classes of the quaternion group Q8.

Leave a Reply