What are the Conjugacy Classes of Q8

The conjugacy classes of Q8 are {1}, {−1}, {i,−i}, {j,−j} and {k,−k}. Recall that
\begin{equation*}
Q_8 = \{1,-1,i,-i,j,-j,k,-k\}
\end{equation*}
where (Q_8, \cdot) is a group with product operation, 1 \cdot a = a \cdot 1 = 1, (-1) \cdot a = a \cdot (-1) = -1 for all a \in Q_8, (-1)\cdot(-1) = 1 and
\begin{align*}
i \cdot i &= j \cdot j = k \cdot k = -1 \\ 
i \cdot j &= k, \quad i \cdot k = -j, \\
j \cdot i &= -k, \quad j \cdot k = i, \\
k \cdot i &= j, \quad k \cdot j = -j
\end{align*}
Recall that to find the conjugacy classes, for each element of Q_8 say a, we have to find all the element \sigma a\sigma^{-1} for all \sigma \in Q_8. This corresponds to a conjugacy class.

Proof. It is easily to see for 1 and -1 that we have the conjugacy classes \{-1\} and \{1\}. Now can do the rest: a = i:
\begin{align*}
1 \cdot i \cdot 1 &= i \\
(-1) \cdot i \cdot (-1) &= i \\ 
i\cdot i \cdot i &= -i \\
(-i)\cdot i \cdot (-i) &= (-i)\cdot 1 = -i \\
j \cdot i \cdot j &= j\cdot k = i \\
(-j)\cdot i \cdot (-j) &= (-j)\cdot(-k) = i \\
k \cdot i \cdot k &= k \cdot (-j) = i \\
(-k)\cdot i \cdot (-k) &= (-k)\cdot j = i \\
\end{align*}
a = -i:
\begin{align*}
1 \cdot (-i) \cdot 1 &= -i \\
(-1) \cdot (-i) \cdot (-1) &= -i \\ 
i\cdot (-i) \cdot i &= i \\
(-i)\cdot (-i) \cdot (-i) &= (-i)\cdot (-1) = i \\
j \cdot (-i) \cdot j &= j\cdot (-k) = -i \\
(-j)\cdot (-i) \cdot (-j) &= (-j)\cdot k = -i \\
k \cdot (-i) \cdot k &= k \cdot j = -i \\
(-k)\cdot (-i) \cdot (-k) &= (-k)\cdot (-j) = -i \\
\end{align*}
So we have the conjugacy class \{i,-i\}.

a = j:
\begin{align*}
1 \cdot j \cdot 1 &= j \\
(-1) \cdot j \cdot (-1) &= j \\ 
i\cdot j \cdot i &= i \cdot (-k) = j \\
(-i)\cdot j \cdot (-i) &= (-i)\cdot k = j \\
j \cdot j \cdot j &= -j \\
(-j)\cdot j \cdot (-j) &= -j \\
k \cdot j \cdot k &= k \cdot i = j \\
(-k)\cdot j \cdot (-k) &= (-k)\cdot (-i) = j \\
\end{align*}
a = -j:
\begin{align*}
1 \cdot (-j) \cdot 1 &= -j \\
(-1) \cdot (-j) \cdot (-1) &= -j \\ 
i\cdot (-j) \cdot i &= i \cdot k = -j \\
(-i)\cdot (-j) \cdot (-i) &= (-i)\cdot (-k) = -j \\
j \cdot (-j) \cdot j &= j \\
(-j)\cdot (-j) \cdot (-j) &= j \\
k \cdot (-j) \cdot k &= k \cdot (-i) = -j \\
(-k)\cdot (-j) \cdot (-k) &= (-k)\cdot i = -j \\
\end{align*}
So we have the conjugacy class \{j,-j\}.

a = k:
\begin{align*}
1 \cdot k \cdot 1 &= k \\
(-1) \cdot k \cdot (-1) &= k \\ 
i\cdot k \cdot i &= i \cdot j = k \\
(-i)\cdot k \cdot (-i) &= (-i)\cdot (-j) = k \\
j \cdot k \cdot j &= j \cdot (-i) = k \\
(-j)\cdot k \cdot (-j) &= (-j) \cdot i = k \\
k \cdot k \cdot k &= -k \\
(-k)\cdot k \cdot (-k) &= -k \\
\end{align*}
a = -k:
\begin{align*}
1 \cdot (-k) \cdot 1 &= -k \\
(-1) \cdot (-k) \cdot (-1) &= -k \\ 
i\cdot (-k) \cdot i &= i \cdot (-j) = -k \\
(-i)\cdot (-k) \cdot (-i) &= (-i)\cdot j = -k \\
j \cdot (-k) \cdot j &= j \cdot i = -k \\
(-j)\cdot (-k) \cdot (-j) &= (-j) \cdot (-i) = -k \\
k \cdot (-k) \cdot k &= k \\
(-k)\cdot (-k) \cdot (-k) &= k \\
\end{align*}
So we have the conjugacy class \{k,-k\}. Conclusion: {1}, {−1}, {i,−i}, {j,−j} and {k,−k} are the conjugacy classes of the quaternion group Q8.

Leave a Reply