The kernel of a homomorphism is a normal subgroup

The kernel of a homomorphism is a normal subgroup

Proof. Take \phi: G \longrightarrow G and
\begin{align*}
\ker(\phi) = \{a\in G \ | \ \phi(a) = e\},
\end{align*}
where e is the identity element of G. We need to show that for all g\in G we have gag^{-1} \in \ker(\phi). Now if a \in \ker(\phi) and g \in G, then
\begin{align*}
\phi(gag^{-1}) &= \phi(g)\phi(a)\phi(g^{-1}) \quad \text{because kernel is a homomorphism} \\
&= \phi(g)\phi(a)\phi(g)^{-1}\\
&= \phi(g)e\phi(g)^{-1} \\
&= \phi(g)\phi(g)^{-1} \\
&= e.
\end{align*}
So gag^{-1} \in \ker(\phi).

Leave a Reply