The Group Z/2Z x Z/2Z is not Cyclic

\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} is not cyclic

Proof. We will explicitly determine if the group \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} can be generated by one of its own elements. Recall that we have the group (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, +) and that
\begin{align*}
\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \{(0,0),(1,0),(0,1),(1,1)\}.
\end{align*}
Let’s check if (1,0) is the generator of \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}. Then
\begin{align*}
(1,0) + (1,0) = (0,0), \quad (0,0) + (1,0) = (1,0).
\end{align*}
So we see that \langle (1,0) \rangle = \{(0,0),(1,0)\} which is not the generator of \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}. Now we can check all the other elements:
\begin{align*}
\langle (0,0) \rangle &= \{(0,0)\} \\
\langle (0,1) \rangle &= \{(0,0),(0,1)\} \\
\langle (1,1) \rangle &= \{(0,0),(1,1)\}
\end{align*}
No single element of the group \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} can generate the group \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, so \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} is not cyclic.

Leave a Reply