The group GL2(F2) is non-abelian

We will show that GL_2(\mathbb{F}_2) is non-abelian.

Proof. We have seen here that the elements of GL_2(\mathbb{F}_2) are as follows:
 GL_2(\mathbb{F}_2) = \{ \begin{pmatrix} 
1 & 0 \\
0 & 1
\end{pmatrix},  
\begin{pmatrix} 
0 & 1 \\
1 & 0
\end{pmatrix},
\begin{pmatrix} 
 1 & 1  \\
 1 & 0 
\end{pmatrix},
\begin{pmatrix} 
 1 & 1  \\
 0 & 1
\end{pmatrix},
\begin{pmatrix} 
 0 & 1  \\
 1 & 1
\end{pmatrix}, 
\begin{pmatrix} 
 1 & 0  \\
 1 & 1 
\end{pmatrix} \}.  
We want to show that there exist two matrices A,B \in GL_2(\mathbb{F}_2) such that AB \neq BA. We will take:
 A = \begin{pmatrix} 
0 & 1 \\
1 & 0
\end{pmatrix}
\quad \text{and} \quad
B = \begin{pmatrix} 
1 & 1 \\
1 & 0
\end{pmatrix}.  
Then we get:
AB = \begin{pmatrix} 
0 & 1 \\
1 & 0
\end{pmatrix}  
\begin{pmatrix} 
1 & 1 \\
1 & 0
\end{pmatrix}
=
\begin{pmatrix} 
 1 & 0  \\
 1 & 1 
\end{pmatrix},
and
 BA = \begin{pmatrix} 
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix} 
0 & 1 \\
1 & 0
\end{pmatrix} 
=
\begin{pmatrix} 
 1 & 1  \\
 0 & 1 
\end{pmatrix},
Therefore, we see that AB \neq BA. So, GL_2(\mathbb{F}_2) is non-abelian.

Leave a Reply