Proof. We have seen here that the elements of GL_2(\mathbb{F}_2) are as follows:
GL_2(\mathbb{F}_2) = \{ \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix},
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix},
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 0 \\
1 & 1
\end{pmatrix} \}. A = \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\quad \text{and} \quad
B = \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}. AB = \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 \\
1 & 1
\end{pmatrix}, BA = \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix},