Proof. Let F be any field. Recall that the general linear group is defined as:
\begin{align*} GL_n(F) = \{A \ | \ A \text{ is an } n \times n \text{ invertible matrix with entries from } F\} \end{align*}
\begin{align*} SL_n(F) = \{A \in GL_n(F) \ | \ det(A) = 1\}. \end{align*}
\begin{align*} det(A^{-1}) = \frac{1}{det(A)} = \frac{1}{1} = 1. \end{align*}
\begin{align*} det(AB) = det(A)det(B) = 1. \end{align*}
So SL_n(F) is a subgroup of GL_n(F).