You are currently viewing Derivative of tan(x) using First Principle of Derivatives
Derivative of tan(x) using First Principle Method

Derivative of tan(x) using First Principle of Derivatives

Using the first principle of derivatives, we will prove the derivative of a tangent, or in other words, that the derivative \tan(x) is 1/\cos^2(x). Proof. Let f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)}. Then
\begin{align*}
f'(x) &= \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} \\
&= \lim_{h \rightarrow 0} \frac{\tan(x + h) - \tan(x)}{h} \\
&= \lim_{h \rightarrow 0} \frac{\frac{\sin(x + h)}{\cos(x + h)} - \frac{\sin(x)}{\cos(x)}}{h} \\
&= \lim_{h \rightarrow 0} \frac{\frac{\sin(x + h)\cos(x) - \cos(x + h)\sin(x)}{\cos(x + h)\cos(x)}}{h}
\end{align*}
We will use the next identity:
\begin{equation*}
\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y).
\end{equation*}
This would imply for us that
\begin{equation*}
\sin(x + h)\cos(x) - \cos(x + h)\sin(x) = \sin(x + h - x) = \sin(h).
\end{equation*}
Therefore we get
\begin{align*}
\lim_{h \rightarrow 0} \frac{\frac{\sin(h)}{\cos(x + h)\cos(x)}}{h} = \lim_{h \rightarrow 0} \frac{\sin(h)}{h} \cdot \lim_{h \rightarrow 0} \frac{1}{\cos(x + h)\cos(x)}
\end{align*}
We do have know that \lim_{h \rightarrow 0} \frac{\sin(h)}{h} = 1 from this article. So continuing where we left:
\begin{align*}
\lim_{h \rightarrow 0} \frac{1}{\cos(x + h)\cos(x)} = \frac{1}{\cos(x)\cos(x)} = \frac{1}{\cos^2(x)} = \sec^2(x)
\end{align*}
Therefore, we get f'(x) = \frac{1}{\cos^2(x)} = \sec^2(x).

Leave a Reply