You are currently viewing Derivative of sec(x) using First Principle of Derivatives
Derivative of sec(x)

Derivative of sec(x) using First Principle of Derivatives

We will use the first principle of derivatives to prove that the derivative of \sec(x) is \tan(x)\sec(x), or in other words, by the definition of the derivative.

Proof. Let f(x) = \sec(x) = \frac{1}{\cos(x)}. Then
\begin{align*}
f'(x) &= \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} \\
&= \lim_{h \rightarrow 0} \frac{\sec(x + h) -\sec(x)}{h} \\
&= \lim_{h \rightarrow 0} \frac{\frac{1}{\cos(x + h)} - \frac{1}{\cos(x)}}{h} \\
&= \lim_{h \rightarrow 0} \frac{\frac{\cos(x) - \cos(x + h)}{\cos(x + h)\cos(x)}}{h}
\end{align*}
We will use the following identity
\begin{align*}
\cos(A) - \cos(B) = -2\sin(\frac{A + B}{2})\sin(\frac{A - B}{2})
\end{align*}
In our case, that would mean
\begin{align*}
\cos(x) - \cos(x + h) = -2\sin(\frac{2x + h}{2})\sin(\frac{-h}{2})
\end{align*}
Further, we do from this article that \lim_{h \rightarrow 0} \frac{\sin(h/2)}{h/2} = 1 and \sin(-h/2) = -\sin(h/2). This results
\begin{align*}
\lim_{h \rightarrow 0} \frac{\frac{-2\sin(\frac{2x + h}{2})\sin(\frac{-h}{2})}{\cos(x + h)\cos(x)}}{h} &= \lim_{h \rightarrow 0} -\frac{\sin(-h/2)}{h/2} \cdot \lim_{h \rightarrow 0} \frac{\sin(\frac{2x + h}{2})}{\cos(x + h)\cos(x)} \\
&= \lim_{h \rightarrow 0} \frac{\sin(h/2)}{h/2} \cdot \lim_{h \rightarrow 0} \frac{\sin(\frac{2x + h}{2})}{\cos(x + h)\cos(x)} \\
&= \lim_{h \rightarrow 0} \frac{\sin(\frac{2x + h}{2})}{\cos(x + h)\cos(x)} \\
&= \frac{\sin(x)}{\cos^2(x)} \\
&= \frac{\tan(x)}{\cos(x)} \\
&= \tan(x)\sec(x).
\end{align*}
So this concludes that f'(x) = \tan(x)\sec(x).

Leave a Reply