You are currently viewing Derivative of ln(x) using First Principle of Derivatives
Derivative of ln(x) using First Principle of Derivatives

Derivative of ln(x) using First Principle of Derivatives

We will prove the derivative of ln(x)\ln(x) is 1x\frac{1}{x} using the first principle of derivatives. If we have loga(x)\log_a(x) where a=ea = e, then loga(x)=ln(x)\log_a(x) = \ln(x)

Proof. Let f(x)=ln(x)f(x) = \ln(x). Then
f(x)=limh0f(x+h)f(x)h=limh0ln(x+h)ln(x)h=limh0ln(x+hx)h=limh0ln(1+hx)h\begin{align*} f'(x) &= \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} \\ &= \lim_{h \rightarrow 0} \frac{\ln(x + h) - \ln(x)}{h} \\ &= \lim_{h \rightarrow 0} \frac{\ln(\frac{x + h}{x})}{h} \\ &= \lim_{h \rightarrow 0} \frac{\ln(1 + \frac{h}{x})}{h} \end{align*}
Now we will multiply the nominator and denominator with 1x\frac{1}{x}:
limh01xln(1+hx)1xh=1xlimh0xhln(1+h/x)\begin{align*} \lim_{h \rightarrow 0} \frac{\frac{1}{x}\ln(1 + \frac{h}{x})}{\frac{1}{x}h} &= \frac{1}{x}\lim_{h \rightarrow 0} \frac{x}{h}\ln(1 + h/x) \end{align*}
Now we will use the logarithm power rule bloga(x)=loga(xb)b \cdot \log_a(x) = \log_a(x^b):
1xlimh0ln(1+h/x)xh=1xln(limh0(1+h/x)xh)\begin{align*} \frac{1}{x}\lim_{h \rightarrow 0} \ln(1 + h/x)^{\frac{x}{h}} = \frac{1}{x} \ln(\lim_{h \rightarrow 0}(1 + h/x)^{\frac{x}{h}}) \end{align*}
We know that limh0(1+h/x)xh=e\lim_{h \rightarrow 0} (1 + h/x)^{\frac{x}{h}} = e from this article. So we get
1xln(e)=1x1=1x.\begin{align*} \frac{1}{x} \ln(e) = \frac{1}{x} \cdot 1 = \frac{1}{x}. \end{align*}
So our desired result is f(x)=1xf'(x) = \frac{1}{x}.

Leave a Reply