You are currently viewing Derivative of ln(x) using First Principle of Derivatives
Derivative of ln(x) using First Principle of Derivatives

Derivative of ln(x) using First Principle of Derivatives

We will prove the derivative of \ln(x) is \frac{1}{x} using the first principle of derivatives. If we have \log_a(x) where a = e, then \log_a(x) = \ln(x)

Proof. Let f(x) = \ln(x). Then
\begin{align*}
f'(x) &= \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} \\
&= \lim_{h \rightarrow 0} \frac{\ln(x + h) - \ln(x)}{h} \\
&= \lim_{h \rightarrow 0} \frac{\ln(\frac{x + h}{x})}{h} \\
&= \lim_{h \rightarrow 0} \frac{\ln(1 + \frac{h}{x})}{h} 
\end{align*}
Now we will multiply the nominator and denominator with \frac{1}{x}:
\begin{align*}
\lim_{h \rightarrow 0} \frac{\frac{1}{x}\ln(1 + \frac{h}{x})}{\frac{1}{x}h} &= \frac{1}{x}\lim_{h \rightarrow 0} \frac{x}{h}\ln(1 + h/x) 
\end{align*}
Now we will use the logarithm power rule b \cdot \log_a(x) = \log_a(x^b):
\begin{align*}
\frac{1}{x}\lim_{h \rightarrow 0} \ln(1 + h/x)^{\frac{x}{h}} = \frac{1}{x} \ln(\lim_{h \rightarrow 0}(1 + h/x)^{\frac{x}{h}})
\end{align*}
We know that \lim_{h \rightarrow 0} (1 + h/x)^{\frac{x}{h}} = e from this article. So we get
\begin{align*}
\frac{1}{x} \ln(e) = \frac{1}{x} \cdot 1 = \frac{1}{x}.
\end{align*}
So our desired result is f'(x) = \frac{1}{x}.

Leave a Reply