You are currently viewing What is the integral of xe^(x^2)?
integral of xe^(x^2)

What is the integral of xe^(x^2)?

The integral of xe^{x^2} is \frac{1}{2}e^{x^2} + C.

Solution. We want to determine the integral of xe^{x^2}, i.e.:
\begin{align*}
\int xe^{x^2}dx.
\end{align*}
We will use the substitution method. Let u = x^2, then du = 2x dx. Therefore, we get:
\begin{align*}
\int xe^{x^2}dx &= \frac{1}{2} \int e^u du \\
&= \frac{1}{2}e^u + C \\
&= \frac{1}{2}e^{x^2} + C.
\end{align*}
Therefore, the integral of xe^{x^2} is \frac{1}{2}e^{x^2} + C.

Leave a Reply