You are currently viewing What is the integral of tan^3(x)?
integral of tan^3(x)

What is the integral of tan^3(x)?

The integral of \tan^3(x) is \frac{1}{2}\tan^2(x) + \ln(\lvert \cos(x) \rvert) + C.

Solution. We want determine the integral of \tan^3(x), i.e.,
\begin{align*}
\int \tan^3(x) dx.
\end{align*}
We can simplify the integral of \tan^3(x) to the following:
\begin{align*}
\int \tan^3(x) dx = \int (\sec^2(x) - 1)\tan(x)dx = \int \sec^2(x)\tan(x)dx - \int \tan(x)dx.
\end{align*}
where we have seen here that \sec^2(x) - 1 = \tan^2(x). Further, we know from here the integral of \tan(x) is \ln \lvert \sec(x) \rvert plus some constant. So we get:
\begin{align*}
\int \sec^2(x)\tan(x)dx - \int \tan(x)dx = \int \sec^2(x)\tan(x)dx - \ln \lvert \sec(x) \rvert = \int \sec^2(x)\tan(x)dx + \ln( \lvert \cos(x) \rvert).
\end{align*}
To do the other integral, we will apply the substitution method. Let u = \tan(x), then we know from here that du = \sec^2(x)dx. Therefore, combining everything, we get:
\begin{align*}
\int \tan^3(x) dx &= \int \sec^2(x)\tan(x)dx - \int \tan(x)dx \\
&= \int \sec^2(x)\tan(x)dx + \ln( \lvert \cos(x) \rvert) \\
&= \int u du +  \ln( \lvert \cos(x) \rvert) \\
&= \frac{1}{2} u^2 + \ln( \lvert \cos(x) \rvert) + C \\
&= \frac{1}{2} \tan^2(x) + \ln(\lvert \cos(x) \rvert) + C.
\end{align*}
Therefore, the integral of \tan^3(x) is \frac{1}{2}\tan^2(x) + \ln(\lvert \cos(x) \rvert) + C.

Leave a Reply