Solution. We want to determine the integral of \sin^3(x), that is:
\begin{align*} \int \sin^3(x) dx. \end{align*}
\begin{align*} \int \sin^3(x) dx = \int \sin^2(x)\sin(x) dx = \int (1 - \cos^2(x))\sin(x) dx. \end{align*}
\begin{align*} \int (1 - \cos^2(x))\sin(x) dx &= -\int (1 - u^2) du \\ &= -u + \frac{1}{3}u^3 + C \\ &= -\cos(x) + \frac{1}{3} \cos^3(x) + C. \end{align*}