Solution. We want to determine the integral of \sec^3(x), i.e.:
\begin{align*}
I = \int \sec^3(x) dx.
\end{align*}\begin{align*}
\int UdV = UV - \int VdU,
\end{align*}\begin{align*}
U = \sec(x), \quad &dV = \sec^2(x)dx\\
dU = \sec(x)\tan(x)dx, \quad &V = \tan(x).
\end{align*}\begin{align*}
I &= \int \sec^3(x) dx \\
&= \sec(x)\tan(x) - \int \sec(x)\tan^2(x)dx.
\end{align*}\begin{align*}
\sec(x)\tan(x) - \int \sec(x)\tan^2(x) &= \sec(x)\tan(x) - \int \sec(x)(\sec^3(x) - 1)dx \\
&= \sec(x)\tan(x) - \int \sec^3(x)dx + \int \sec(x)dx \\
&= \sec(x)\tan(x) - I + \ln \lvert \sec(x) + \tan(x) \rvert,
\end{align*}\begin{align*}
I &= sec(x)\tan(x) - I + \ln \lvert \sec(x) + \tan(x) \rvert \iff \\
2I &= \sec(x)\tan(x) + \ln \lvert \sec(x) + \tan(x) \rvert \iff \\
\int \sec^3(x)dx &= \frac{1}{2} \sec(x)\tan(x) + \frac{1}{2}\ln \lvert \sec(x) + \tan(x) \rvert + C
\end{align*}