Solution. We want to determine the integral of \ln(x)/x:
\begin{align*} \int \frac{\ln(x)}{x} dx. \end{align*}
\begin{align*} \int \frac{\ln(x)}{x} dx &= \int u du \\ &= \frac{1}{2}u^2 + C \\ &= \frac{1}{2}\ln^2(x) + C. \end{align*}
\begin{align*} \int \frac{\ln(x)}{x} dx. \end{align*}
\begin{align*} \int \frac{\ln(x)}{x} dx &= \int u du \\ &= \frac{1}{2}u^2 + C \\ &= \frac{1}{2}\ln^2(x) + C. \end{align*}