You are currently viewing What is the integral of inverse e^x?
integral of inverse e^x

What is the integral of inverse e^x?

The integral of exe^{-x} is ex+C-e^{-x} + C.

Solution. We want to determine the integral of exe^{-x}, i.e.:
1exdx=exdx.\begin{align*} \int \frac{1}{e^x} dx = \int e^{-x}dx. \end{align*}
We will use the substitution method: let u=xu = -x, then du=dxdu = -dx. Then we get the following integral:
exdx=eudu=eu+C=ex+C.\begin{align*} \int e^{-x} dx &= - \int e^u du \\ &= -e^u + C \\ &= -e^{-x} + C. \end{align*}
Therefore, the integral of exe^{-x} is ex+C-e^{-x} + C.

Leave a Reply