You are currently viewing What is the integral of (e^x + 1)/(e^x – 1)?
what is the integral of (e^x + 1)/(e^x - 1)

What is the integral of (e^x + 1)/(e^x – 1)?

The integral of \frac{e^x + 1}{e^x - 1} is 2\ln\lvert e^x - 1 \rvert - x + C.

Solution. We want to determine the integral of \frac{e^x + 1}{e^x - 1}, i.e.:
\begin{align*}
\int \frac{e^x + 1}{e^x - 1} dx = \int \frac{e^x}{e^x - 1} dx + \int \frac{1}{e^x - 1} dx.
\end{align*}
First we will determine \int \frac{e^x}{e^x - 1} dx. We will use the substitution method. So take u = e^x - 1. Then we saw here that du = e^x dx. Therefore, we get the following:
\begin{align*}
\int \frac{e^x}{e^x - 1} dx &= \int \frac{du}{u} \\ 
&= \ln \lvert u \rvert + C_1 \\
&= \ln \lvert e^x - 1 \rvert + C_1,
\end{align*}
where C_1 is some constant. Now what is left is to determine \int \frac{1}{e^x - 1} dx. This integral is difficult to determine, but we make it easy by using the following handy adjustment:
\begin{align*}
\int \frac{1}{e^x - 1} dx = \int \frac{1}{e^x(1 - e^{-x})} dx = \int \frac{e^{-x}}{1 - e^{-x}} dx.
\end{align*}
Now we will apply the substitution method. Let v = 1 - e^{-x}. Then we saw here that dv = e^{-x} dx. So we get the following:
\begin{align*}
\int \frac{e^{-x}}{1 - e^{-x}} dx &= \int \frac{dv}{v} \\
&= \ln \lvert v \rvert + C_2 \\
&= \ln \lvert 1 - e^{-x} \rvert + C_2 \\
&= \ln \lvert e^{-x}(e^x - 1) \rvert + C_2 \\
&= \ln \lvert e^{-x} \rvert + \lvert e^{-x} - 1 \rvert + C_2 \\
&= -x + \lvert e^{-x} - 1 \rvert + C_2,
\end{align*}
where C_2 is some constant. Now we will combine everything together:
\begin{align*}
\int \frac{e^x + 1}{e^x - 1} dx &= \int \frac{e^x}{e^x - 1} dx + \int \frac{1}{e^x - 1} dx \\
&= \ln \lvert e^x - 1 \rvert + C_1 -x + \lvert e^{-x} - 1 \rvert + C_2 \\
&= 2\ln\lvert e^x - 1 \rvert - x + C,
\end{align*}
where C = C_1 + C_2. So, the integral of \frac{e^x + 1}{e^x - 1} is 2\ln\lvert e^x - 1 \rvert - x + C.

Leave a Reply