You are currently viewing What is the integral of csc^3(x)?
the integral of csc^3(x)

What is the integral of csc^3(x)?

The integral of \csc^3(x) is -\frac{1}{2}\csc(x)\cot(x) - \frac{1}{2}\ln \lvert \csc(x) + \cot(x) \rvert + C.

Solution. We need to determine the integral of \csc^3(x):
\begin{align*}
I = \int \csc^3(x) dx.
\end{align*}
We will integrate by parts, i.e., we will use the following formula:
\begin{align*}
\int UdV = UV - \int VdU,
\end{align*}
where we get the following functions:
\begin{align*}
U = \csc(x), \quad &dV = \csc^2(x)dx\\
dU = -\csc(x)\tan(x)dx, \quad &V = -\cot(x).
\end{align*}
We can see here how to get dU and here how to get V. So we get the following:
\begin{align*}
I &= \int \csc^3(x) dx \\
&= -\csc(x)\cot(x) - \int \csc(x)\cot^2(x) dx \\
&= -\csc(x)\cot(x) - \int \csc(x)(\csc^2(x) - 1)dx \\
&= -\csc(x)\cot(x) - \int \csc^3(x)dx + \int \csc(x)dx \\
&= -\csc(x)\cot(x) - I - \ln \lvert \csc(x) + \cot(x) \rvert,
\end{align*}
where \cot^2(x) = \csc^2(x) - 1 which we have seen here and the integral of \csc(x) can be checked here. Now we will bring I to the left-hand side, and so, we get the integral of \csc^3(x):
\begin{align*}
\int \csc^3(x) dx = -\frac{1}{2}\csc(x)\cot(x) - \frac{1}{2}\ln \lvert \csc(x) + \cot(x) \rvert + C.
\end{align*}
Therefore, the integral of \csc^3(x) is -\frac{1}{2}\csc(x)\cot(x) - \frac{1}{2}\ln \lvert \csc(x) + \cot(x) \rvert + C.

Leave a Reply