Solution. We need to determine the integral of \csc^3(x):
\begin{align*} I = \int \csc^3(x) dx. \end{align*}
\begin{align*} \int UdV = UV - \int VdU, \end{align*}
\begin{align*} U = \csc(x), \quad &dV = \csc^2(x)dx\\ dU = -\csc(x)\tan(x)dx, \quad &V = -\cot(x). \end{align*}
\begin{align*} I &= \int \csc^3(x) dx \\ &= -\csc(x)\cot(x) - \int \csc(x)\cot^2(x) dx \\ &= -\csc(x)\cot(x) - \int \csc(x)(\csc^2(x) - 1)dx \\ &= -\csc(x)\cot(x) - \int \csc^3(x)dx + \int \csc(x)dx \\ &= -\csc(x)\cot(x) - I - \ln \lvert \csc(x) + \cot(x) \rvert, \end{align*}
\begin{align*} \int \csc^3(x) dx = -\frac{1}{2}\csc(x)\cot(x) - \frac{1}{2}\ln \lvert \csc(x) + \cot(x) \rvert + C. \end{align*}