Proof. We want to determine the integral of \cot^2(x):
\begin{align*}
\int \cot^2(x) dx.
\end{align*}\begin{align*}
\int \cot^2(x) dx &= \int (\csc^2(x) - 1)dx \\
&= \int \csc^2(x)dx - \int 1\cdot dx.
\end{align*}\begin{align*}
\int \cot^2(x) dx &= \int (\csc^2(x) - 1)dx \\
&= \int \csc^2(x)dx - \int 1\cdot dx \\
&= -\cot(x) - x + C.
\end{align*}