Solution. We want to determine the integral of \cot^3(x), which can be simplified by using \cot^2 = \csc^2(x) - 1, which we have proven earlier:
\begin{align*}
\int \cot^3(x) dx = \int (\csc^2(x) - 1)\cot(x) dx = \int \csc^2(x)\cot(x) dx - \int \cot(x)dx.
\end{align*}\begin{align*}
\int \csc^2(x)\cot(x) dx - \int \cot(x)dx = \int \csc^2(x)\cot(x) dx - \ln \lvert \sin(x) \rvert.
\end{align*}\begin{align*}
\int \cot^3(x) dx &= \int (\csc^2(x) - 1)\cot(x) dx \\
&= \int \csc^2(x)\cot(x) dx - \int \cot(x)dx \\
&= \int \csc^2(x)\cot(x) dx - \ln \lvert \sin(x) \rvert \\
&= - \int u du - \ln \lvert \sin(x) \rvert \\
&= -\frac{1}{2} u^2 - \ln \lvert \sin(x) \rvert + C \\
&= -\frac{1}{2} \csc^2(x) - \ln \lvert \sin(x) \rvert + C.
\end{align*}