Solution. We want to determine the integral of \cos^3(x), i.e.:
\begin{align*} \int \cos^3(x) dx. \end{align*}
\begin{align*} \int \cos^3(x) dx = \int \cos^2(x)\cos(x) dx = \int (1 - \sin^2(x))\cos(x) dx. \end{align*}
\begin{align*} \int (1 - \sin^2(x))\cos(x) dx &= \int (1 - u^2) du \\ &= u - \frac{1}{3}u^3 + C \\ &= \sin(x) - \frac{1}{3} \sin^3(x) + C. \end{align*}