You are currently viewing What is the integral of arctan(x)?
integral of arctan(x)

What is the integral of arctan(x)?

The integral of \tan^{-1}(x) is x\tan^{-1}(x) - \frac{1}{2}\ln \lvert 1 + x^2 \rvert + C.

Solution. We want to find the integral of \tan^{-1}(x), i.e.:
\begin{align*}
\int \tan^{-1}(x) dx.
\end{align*}
Now we will use the method integrating by parts, i.e.:
\begin{align*}
\int UdV = UV - \int VdU,
\end{align*}
where we get the following functions:
\begin{align*}
U = \tan^{-1}(x), \quad &dV = dx\\
dU = \frac{dx}{1 + x^2}, \quad &V = x.
\end{align*}
To see why dU is true, see the solution here. So we get:
\begin{align*}
\int \tan^{-1}(x) dx = x\tan^{-1}(x) - \int \frac{x}{1 + x^2} dx.
\end{align*}
The last method we will use is the substitution method. Let u = 1 + x^2, then du = 2x dx. Combining everything, we get:
\begin{align*}
\int \tan^{-1}(x) dx &= x\tan^{-1}(x) - \int \frac{x}{1 + x^2} dx \\
&= x\tan^{-1}(x) - \frac{1}{2} \int \frac{1}{u} du \\
&= x\tan^{-1}(x) - \frac{1}{2} \ln\lvert u \rvert + C \\
&= x\tan^{-1}(x) - \frac{1}{2} \ln\lvert 1 + x^2 \rvert + C.
\end{align*}
Therefore, the integral of \tan^{-1}(x) is x\tan^{-1}(x) - \frac{1}{2}\ln \lvert 1 + x^2 \rvert + C.

Leave a Reply