You are currently viewing What is the integral of arctan(x)?
integral of arctan(x)

What is the integral of arctan(x)?

The integral of tan1(x)\tan^{-1}(x) is xtan1(x)12ln1+x2+Cx\tan^{-1}(x) - \frac{1}{2}\ln \lvert 1 + x^2 \rvert + C.

Solution. We want to find the integral of tan1(x)\tan^{-1}(x), i.e.:
tan1(x)dx.\begin{align*} \int \tan^{-1}(x) dx. \end{align*}
Now we will use the method integrating by parts, i.e.:
UdV=UVVdU,\begin{align*} \int UdV = UV - \int VdU, \end{align*}
where we get the following functions:
U=tan1(x),dV=dxdU=dx1+x2,V=x.\begin{align*} U = \tan^{-1}(x), \quad &dV = dx\\ dU = \frac{dx}{1 + x^2}, \quad &V = x. \end{align*}
To see why dUdU is true, see the solution here. So we get:
tan1(x)dx=xtan1(x)x1+x2dx.\begin{align*} \int \tan^{-1}(x) dx = x\tan^{-1}(x) - \int \frac{x}{1 + x^2} dx. \end{align*}
The last method we will use is the substitution method. Let u=1+x2u = 1 + x^2, then du=2xdxdu = 2x dx. Combining everything, we get:
tan1(x)dx=xtan1(x)x1+x2dx=xtan1(x)121udu=xtan1(x)12lnu+C=xtan1(x)12ln1+x2+C.\begin{align*} \int \tan^{-1}(x) dx &= x\tan^{-1}(x) - \int \frac{x}{1 + x^2} dx \\ &= x\tan^{-1}(x) - \frac{1}{2} \int \frac{1}{u} du \\ &= x\tan^{-1}(x) - \frac{1}{2} \ln\lvert u \rvert + C \\ &= x\tan^{-1}(x) - \frac{1}{2} \ln\lvert 1 + x^2 \rvert + C. \end{align*}
Therefore, the integral of tan1(x)\tan^{-1}(x) is xtan1(x)12ln1+x2+Cx\tan^{-1}(x) - \frac{1}{2}\ln \lvert 1 + x^2 \rvert + C.

Leave a Reply