The integral of
tan−1(x) is
xtan−1(x)−21ln∣1+x2∣+C.
Solution. We want to find the integral of
tan−1(x), i.e.:
∫tan−1(x)dx.
Now we will use the method integrating by parts, i.e.:
∫UdV=UV−∫VdU,
where we get the following functions:
U=tan−1(x),dU=1+x2dx,dV=dxV=x.
To see why
dU is true, see the solution
here. So we get:
∫tan−1(x)dx=xtan−1(x)−∫1+x2xdx.
The last method we will use is the substitution method. Let
u=1+x2, then
du=2xdx. Combining everything, we get:
∫tan−1(x)dx=xtan−1(x)−∫1+x2xdx=xtan−1(x)−21∫u1du=xtan−1(x)−21ln∣u∣+C=xtan−1(x)−21ln∣1+x2∣+C.
Therefore, the integral of
tan−1(x) is
xtan−1(x)−21ln∣1+x2∣+C.