You are currently viewing What is the integral of arccos(x)?
integral of arccos(x)

What is the integral of arccos(x)?

The integral of \cos^{-1}(x) is x\cos^{-1}(x) - \sqrt{1 - x^2} + C.

Solution. We want to determine the integral of \cos^{-1}(x), i.e.:
\begin{align*}
\int \cos^{-1}(x) dx.
\end{align*}
The firs step we will take is integrating by parts, i.e.:
\begin{align*}
\int UdV = UV - \int VdU,
\end{align*}
where we get the following functions:
\begin{align*}
U = \cos^{-1}(x), \quad &dV = dx\\
dU = \frac{-dx}{\sqrt{1 - x^2}}, \quad &V = x.
\end{align*}
We have already proved earlier the derivative dU here. We get the next integral:
\begin{align*}
\int \cos^{-1}(x) dx = x\cos^{-1}(x) + \int \frac{x}{\sqrt{1 - x^2}} dx.
\end{align*}
Lastly, we will use the substitution method. Let u = 1 - x^2, then du = -2x dx. We get the following:
\begin{align*}
\int \cos^{-1}(x) dx &= x\cos^{-1}(x) + \int \frac{x}{\sqrt{1 - x^2}} dx \\
&= x\cos^{-1}(x) - \frac{1}{2} \int u^{-\frac{1}{2}} du \\
&= x\cos^{-1}(x) - u^{\frac{1}{2}} + C \\
&= x\cos^{-1}(x) - \sqrt{1 - x^2} + C.
\end{align*}
Therefore, the integral of \cos^{-1}(x) is x\cos^{-1}(x) - \sqrt{1 - x^2} + C.

Leave a Reply