Solution. We want to determine the integral of \cos^{-1}(x), i.e.:
\begin{align*} \int \cos^{-1}(x) dx. \end{align*}
\begin{align*} \int UdV = UV - \int VdU, \end{align*}
\begin{align*} U = \cos^{-1}(x), \quad &dV = dx\\ dU = \frac{-dx}{\sqrt{1 - x^2}}, \quad &V = x. \end{align*}
\begin{align*} \int \cos^{-1}(x) dx = x\cos^{-1}(x) + \int \frac{x}{\sqrt{1 - x^2}} dx. \end{align*}
\begin{align*} \int \cos^{-1}(x) dx &= x\cos^{-1}(x) + \int \frac{x}{\sqrt{1 - x^2}} dx \\ &= x\cos^{-1}(x) - \frac{1}{2} \int u^{-\frac{1}{2}} du \\ &= x\cos^{-1}(x) - u^{\frac{1}{2}} + C \\ &= x\cos^{-1}(x) - \sqrt{1 - x^2} + C. \end{align*}