Solution. We want to determine the integral of \frac{1}{e^x + e^{-x}}, i.e.:
\begin{align*} \int \frac{1}{e^x + e^{-x}} dx. \end{align*}
\begin{align*} \int \frac{1}{e^x + e^{-x}} dx = \int \frac{1}{e^x(1 + e^{-2x})} dx = \int \frac{e^{-x}}{1 + e^{-2x}} dx. \end{align*}
\begin{align*} \int \frac{e^{-x}}{1 + e^{-2x}} dx &= \int \frac{-du}{1 + u^2} du \\ &= \tan^{-1}(u) + C \\ &= \tan^{-1}(e^{-x}) + C, \end{align*}