You are currently viewing What is the integral of 1/(e^x + e^-x)?
integral of 1/(e^x + e^-x)

What is the integral of 1/(e^x + e^-x)?

The integral of \frac{1}{e^x + e^{-x}} is \tan^{-1}(e^{-x}) + C.

Solution. We want to determine the integral of \frac{1}{e^x + e^{-x}}, i.e.:
\begin{align*}
\int \frac{1}{e^x + e^{-x}} dx.
\end{align*}
We can rewrite this integral to apply the substitution method later:
\begin{align*}
\int \frac{1}{e^x + e^{-x}} dx = \int \frac{1}{e^x(1 + e^{-2x})} dx = \int \frac{e^{-x}}{1 + e^{-2x}} dx.
\end{align*}
Let u = e^{-x}. We saw here that du = -e^{-x} dx. So we get the following:
\begin{align*}
\int \frac{e^{-x}}{1 + e^{-2x}} dx &= \int \frac{-du}{1 + u^2} du \\
&= \tan^{-1}(u) + C \\
&= \tan^{-1}(e^{-x}) + C, 
\end{align*}
where C is a constant. Therefore, the integral of \frac{1}{e^x + e^{-x}} is \tan^{-1}(e^{-x}) + C.

Leave a Reply