You are currently viewing What is the integral of 1/(e^x + 1)?
integral of 1/(e^x + 1)

What is the integral of 1/(e^x + 1)?

The integral of \frac{1}{e^x + 1} is -\ln \lvert 1 + e^{-x} \rvert + C.

Solution. We want to determine the integral of \frac{1}{e^x + 1}, i.e.:
\begin{align*}
\int \frac{1}{e^x + 1} dx = \int \frac{1}{e^x(1 + e^{-x})} dx = \int \frac{e^{-x}}{1 + e^{-x}} dx.
\end{align*}
We will apply the substitution method, where u = 1 + e^{-x}. Then we know from here that du = -e^{-x} dx. So we get the following:
\begin{align*}
\int \frac{e^{-x}}{1 - e^{-x}} dx &= \int \frac{-du}{u} \\
&= -\ln \lvert u \rvert + C \\
&= -\ln \lvert 1 + e^{-x} \rvert + C,
\end{align*}
where C is some constant. So, the integral of \frac{1}{e^x + 1} is -\ln \lvert 1 + e^{-x} \rvert + C.

Leave a Reply