Proof. Let f(x) = x and g(x) = \ln(x). We will use the product rule:
\begin{align*} (f(x)g(x))' = f'(x)g(x) + f(x)g'(x). \end{align*}
\begin{align*} f'(x) = 1, \end{align*}
\begin{align*} g'(x) = \frac{1}{x} \end{align*}
\begin{align*} (f(x)g(x))' &= f'(x)g(x) + f(x)g'(x) \\ &= 1\cdot \ln(x) + x\frac{1}{x}\\ &= \ln(x) + 1. \end{align*}