Proof. Let F(x) = \tan^2(x), f(u) = u^2 and g(x) = \tan(x) such that F(x) = f(g(x)). We can use the chain rule
\begin{align*} F'(x) = f'(g(x))g'(x). \end{align*}
\begin{align*} f'(g(x)) = 2g(x) = 2\tan(x) \quad \text{and} \quad g'(x) = \sec^2(x). \end{align*}
\begin{align*} F(x) &= f'(g(x))g'(x) \\ &= 2\tan(x)\sec^2(x). \end{align*}