Solution. Let F(x) = \sin^3(x), f(u) = u^3 and g(x) = \sin(x). We will use the chain rule:
\begin{align*} F'(x) = f'(g(x))g'(x). \end{align*}
\begin{align*} f'(u) = 3u^2 \quad \text{and} \quad g'(x) = \cos(x). \end{align*}
\begin{align*} F'(x) &= f'(g(x))g'(x) \\ &= 3\sin^2(x)\cos(x). \end{align*}