Solution. Let F(x) = \ln^3(x), f(u) = u^3 and g(x) = \ln(x) such that F(x) = f(g(x)). Using the chain rule, we can determine the derivative of \ln^3(x):
\begin{align*} F'(x) = f'(g(x))g'(x). \end{align*}
\begin{align*} f'(g(x)) = 3g(x)^2 = 3\ln^2(x). \end{align*}
\begin{align*} F'(x) &= f'(g(x))g'(x) \\ &= 3\ln^2(x) \frac{1}{x} \\ &= \frac{3\ln^2(x)}{x}. \end{align*}