Solution. Let F(x) = \csc^2(x), f(u) = u^2 and g(x) = \csc(x) such that
\begin{align*} F(x) = f(g(x)). \end{align*}
\begin{align*} F'(x) = f'(g(x))g'(x). \end{align*}
\begin{align*} f'(g(x)) = 2g(x) = 2\csc(x) \quad \text{and} \quad g'(x) = -\csc(x)\cot(x). \end{align*}
\begin{align*} F'(x) &= f'(g(x))g'(x) \\ &= 2\csc(x) \cdot (-\csc(x)\cot(x)) \\ &= -2\csc^2(x)\cot(x). \end{align*}