Solution. To determine the derivative of \csc^3(x), we will use the chain rule, i.e.:
\begin{align*} F'(x) = f'(g(x))g'(x), \end{align*}
\begin{align*} f'(g(x)) = f'(\csc(x)) = 3\csc^2(x) \quad \text{and} \quad g'(x) = -\cot(x)\csc(x). \end{align*}
\begin{align*} F'(x) &= f'(g(x))g'(x) \\ &= 3\csc^2(x) \cdot (-\cot(x)\csc(x)) \\ &= -3 \cot(x)\csc^3(x). \end{align*}