You are currently viewing What is the Derivative of arcsec(x)?
Derivative of arcsec(x)

What is the Derivative of arcsec(x)?

The derivative of \text{arcsec}(x) is \frac{1}{\lvert x \rvert \sqrt{x^2 - 1}}.

Solution. Let F(x) = \sec^{-1}(x) = \text{arcsec}(x) with \lvert x \rvert \geq 1. We have seen here that
\begin{align*}
F(x) = \sec^{-1}(x) = \cos^{-1}(1/x). 
\end{align*}
Now let f(u) = \cos^{-1}(u) and g(x) = 1/x such that F(x) = f(g(x)). To determine the derivative \sec^{-1}, we neet to use the chain rule:
\begin{align*}
F'(x) = f'(g(x))g'(x).
\end{align*}
We know from here that:
\begin{align*}
f'(u) = \frac{d}{du} \cos^{-1}(u) = \frac{-1}{\sqrt{1 - u^2}}
\end{align*}
and from here that:
\begin{align*}
g'(x) = -\frac{1}{x^2}.
\end{align*}
So we get:
\begin{align*}
f'(g(x)) = \frac{-1}{\sqrt{1 - g(x)^2}} = \frac{-1}{\sqrt{1 - \frac{1}{x^2}}}.
\end{align*}
Combining everything, we get:
\begin{align*}
F'(x) &= f'(g(x))g'(x) \\
&= \frac{-1}{\sqrt{1 - \frac{1}{x^2}}} \Bigg(-\frac{1}{x^2}\Bigg) \\
&= \frac{1}{x^2} \frac{1}{\sqrt{1 - \frac{1}{x^2}}} \\
&= \frac{1}{x^2} \frac{1}{\sqrt{\frac{x^2 - 1}{x^2}}} \\
&= \frac{1}{x^2} \frac{\sqrt{x^2}}{\sqrt{x^2 - 1}} \\
&= \frac{1}{x^2} \frac{\lvert x \rvert}{\sqrt{x^2 - 1}} \\
&= \frac{1}{\lvert x \rvert} \frac{1}{\sqrt{x^2 - 1}} \\
&= \frac{1}{\lvert x \rvert \sqrt{x^2 - 1}}.
\end{align*}
Therefore we get:
\begin{align*}
F'(x) = \frac{d}{dx} \text{arcsec}(x) = \frac{d}{dx} \sec^{-1}(x) = \frac{1}{\lvert x \rvert \sqrt{x^2 - 1}}.
\end{align*}
So, the derivative of \text{arcsec}(x) is \frac{1}{\lvert x \rvert \sqrt{x^2 - 1}}.

Leave a Reply