Solution. Let F(x) = \csc^{-1}(x) where \lvert x \rvert \geq 1. We have seen here that
\begin{align*} F(x) = \csc^{-1}(x) = \sin^{-1}(1/x), \quad \lvert x \rvert \geq 1. \end{align*}
\begin{align*} F'(x) = f'(g(x))g'(x). \end{align*}
\begin{align*} f'(g(x)) = \frac{1}{\sqrt{1 - g(x)^2}} = \frac{1}{\sqrt{1 - \frac{1}{x^2}}}. \end{align*}
\begin{align*} F'(x) &= f'(g(x))g'(x) \\ &= \frac{1}{\sqrt{1 - \frac{1}{x^2}}} \cdot \frac{-1}{x^2} \\ &= \frac{-1}{x^2\sqrt{1 - \frac{1}{x^2}}}. \end{align*}