Proof. Let F(x) = \text{arccot}(x) = \cot^{-1}(x). We have seen here that:
\begin{align*} \cot^{-1}(x) = \tan^{-1}(1/x), \quad x \neq 0. \end{align*}
\begin{align*} F'(x) = f'(g(x))g'(x). \end{align*}
\begin{align*} f'(g(x)) = \frac{1}{1 + g(x)^2} = \frac{1}{1 + \frac{1}{x^2}}. \end{align*}
\begin{align*} F'(x) &= f'(g(x))g'(x) \\ &= \frac{1}{1 + \frac{1}{x^2}} \cdot \bigg(-\frac{1}{x^2}\bigg) \\ &= \frac{1}{\frac{x^2 + 1}{x^2}} \cdot \bigg(-\frac{1}{x^2}\bigg) \\ &= \frac{x^2}{x^2 + 1} \cdot \bigg(-\frac{1}{x^2}\bigg) \\ &= -\frac{x^2}{x^2(x^2 + 1)} \\ &= -\frac{1}{x^2 + 1}. \end{align*}