\begin{equation*} \sum_{i = 0}^n i = \frac{n(n+1)}{2} \end{equation*}
\begin{equation*} \sum_{i = 0}^0 i = 0 = \frac{0(0+1)}{2} = 0 \end{equation*}
\begin{align*} \sum_{i = 0}^{n+1} i &= \frac{(n + 1)((n + 1) +1)}{2} \\ &= \frac{n(n+1) + 2n + 2}{2} \\ &= \frac{n(n+1)}{2} + \frac{2n + 2}{2} \\ &= \frac{n(n+1)}{2} + (n + 1) \\ &= (\sum_{i = 0}^{n} i) + (n + 1) = \sum_{i = 0}^{n + 1} i \end{align*}
Proof 2. Another way to prove it is to reverse the sum from n to 0, i.e.,
\begin{align*} n + (n-1) + \cdots + 2 + 1 \end{align*}
\begin{alignat*}{4} 1 &+ 2 &&+ \cdots &&+ (n - 1) &&+ n \\ n &+ (n-1) &&+ \cdots &&+ 2 &&+ 1\\ \end{alignat*}
\begin{equation*} 2 \cdot \sum_{i = 0}^n i = n(n + 1) \end{equation*}
\begin{equation*} \sum_{i = 0}^n i = \frac{n(n+1)}{2} \end{equation*}