You are currently viewing Prove that sin^2(x) + cos^2(x) = 1
sin^2(x) + cos^2(x) = 1 proof

Prove that sin^2(x) + cos^2(x) = 1

Show that \sin^2(x) + \cos^2(x) = 1.

Proof. Recall the next addition formula for Cosine:
\begin{align*}
\cos(A-B) = \cos(A)\cos(B) + \sin(A)\sin(B).
\end{align*}
Now take A = B = x. Then we get:
\begin{align*}
\cos(x - x) = \cos(x)\cos(x) + \sin(x)\sin(x) &\iff \cos(0) = \cos^2(x) + \sin^2(x) \\
&\iff 1 = \cos^2(x) + \sin^2(x).
\end{align*}
So we get \sin^2(x) + \cos^2(x) = 1.

Leave a Reply