You are currently viewing Prove that sin^2(x) = 1/2 – 1/2 cos(2x)
proof sin^2(x) = 1/2 - 1/2 cos(2x)

Prove that sin^2(x) = 1/2 – 1/2 cos(2x)

Show that \sin^2(x) is equal to \frac{1}{2} - \frac{1}{2}\cos(2x).

Proof. Recall that we have the next addition formula for Cosine:
\begin{align*}
\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B).
\end{align*}
Now take A = B = x. Then we get:
\begin{align*}
\cos(x + x)  = \cos(x)\cos(x) - \sin(x)\sin(x) &\iff \cos(2x) = \cos^2(x) - \sin^2(x).
\end{align*}
We have seen here that \cos^2(x) = 1 - \sin^2(x). So we get:
\begin{align*}
\cos(2x) = 1 - \sin^2(x) - \sin^2(x) &\iff \cos(2x) = 1 - 2\sin^2(x) \\
&\iff 2\sin^2(x) = 1 - \cos(2x) \\
&\iff \sin^2(x) = \frac{1}{2} - \frac{1}{2}\cos(2x)
\end{align*}
Therefore, \sin^2(x) is equal to \frac{1}{2} - \frac{1}{2}\cos(2x).

Leave a Reply