You are currently viewing Prove that cos^2(x) = 1/2 + 1/2 cos(2x)
Prove that cos^2(x) = 1/2 + 1/2 cos(2x)

Prove that cos^2(x) = 1/2 + 1/2 cos(2x)

Show that \cos^2(x) is equal to \frac{1}{2} + \frac{1}{2}\cos(2x).

Proof. We will use the next addition formula for Cosine:
\begin{align*}
\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B).
\end{align*}
Let A = B = x. Then we get the following:
\begin{align*}
\cos(x + x)  = \cos(x)\cos(x) - \sin(x)\sin(x) &\iff \cos(2x) = \cos^2(x) - \sin^2(x).
\end{align*}
From here we see that \sin^2(x) = 1 - \cos^2(x). So we get:
\begin{align*}
\cos(2x) = \cos^2(x) - (1 - \cos^2(x)) &\iff \cos(2x) = 2\cos^2(x) - 1 \\
&\iff \cos^2(x) = \frac{1}{2} + \frac{1}{2}\cos(2x)
\end{align*}
Therefore, \cos^2(x) is equal to \frac{1}{2} + \frac{1}{2}\cos(2x).

Leave a Reply