Proof. Notice that the functions \csc^{-1}(x) and \sin^{-1}(1/x) are defined on the next intervals:
\begin{align*} \csc^{-1}(x) \text{ where } \lvert x \rvert \geq 1 \end{align*}
\begin{align*} \sin^{-1}(x) \text{ where } -1 \leq x \leq 1. \end{align*}
\begin{align*} y = \csc^{-1}(x) &\iff \csc(y) = x \\ &\iff \frac{1}{\sin(y)} = x \quad \text{since } \csc(y) = \frac{1}{\sin(y)} \\ &\iff \sin(y) = \frac{1}{x} \\ &\iff y = \sin^{-1}(1/x). \end{align*}