Proof. Take the following functions into account:
\begin{align*} \cot^{-1}(x), \text{ where } x \neq 0, \end{align*}
\begin{align*} \tan^{-1}(x), \text{ where } x \text{ is defined everywhere.} \end{align*}
\begin{align*} y = \cot^{-1}(x) &\iff \cot(y) = x \\ &\iff \frac{1}{\tan(y)} = x \\ &\iff y = \tan^{-1}(1/x), \end{align*}