You are currently viewing Limit of (e^x – 1)/x as x approaches 0
Limit of (e^x - 1)/x as x approaches 0

Limit of (e^x – 1)/x as x approaches 0

The limit of ex1x\frac{e^x - 1}{x} as xx approaches 0 is equal to 1. This is easy to see with the Maclaurin series.

Proof. If we apply the Bernoulli inequality and let nn \rightarrow \infty, then we get
1+xex.\begin{align*} 1 + x \leq e^x. \end{align*}
Now, for x\lvert x \rvert < 11, we get that 1xex1 - x \leq e^{-x}, which implies that ex11xe^x \leq \frac{1}{1-x}. So we have the following:
1+xex11x\begin{align*} 1 + x \leq e^x \leq \frac{1}{1-x} \end{align*}
Subtract both sides with 1-1 and divide by xx. Then we get:
1ex1x11x\begin{align*} 1 \leq \frac{e^x - 1}{x} \leq \frac{1}{1-x} \end{align*}
Now, by the squeeze theory, we see that, indeed, the limit of ex1x\frac{e^x - 1}{x} as xx approaches 0 is equal to 1.

Proof. This proof is more of circular reasoning, but still valuable to see how easy it works for in the future. We want to determine the next limit:
limx0ex1x\begin{align*} \lim_{x \rightarrow 0} \frac{e^x - 1}{x} \end{align*}
We know that the Maclaurin series of exe^x is
ex=n=0xnn!=1+x+x22!+x33!+\begin{align*} e^x &= \sum_{n = 0}^{\infty} \frac{x^n}{n!} \\ &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \end{align*}
Further, we will subtract the Maclaurin series with 1:
ex1=n=1xnn!=x+x22!+x33!+\begin{align*} e^x - 1 &= \sum_{n = 1}^{\infty} \frac{x^n}{n!} \\ &= x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \end{align*}
Now we divide it out with xx:
ex1x=n=1xn1n!=1+x2!+x23!+\begin{align*} \frac{e^x - 1}{x} &= \sum_{n = 1}^{\infty} \frac{x^{n-1}}{n!} \\ &= 1 + \frac{x}{2!} + \frac{x^2}{3!} + \cdots \end{align*}
Wrapping up together, we get:
limx0ex1x=limx0n=1xn1n!=limx0(1+x2!+x23!+)=1+limx0(x2!+x23!+)=1+0+0+0+=1.\begin{align*} \lim_{x \rightarrow 0} \frac{e^x - 1}{x} &= \lim_{x \rightarrow 0} \sum_{n = 1}^{\infty} \frac{x^{n-1}}{n!} \\ &= \lim_{x \rightarrow 0} (1 + \frac{x}{2!} + \frac{x^2}{3!} + \cdots) \\ &= 1 + \lim_{x \rightarrow 0} (\frac{x}{2!} + \frac{x^2}{3!} + \cdots) \\ &= 1 + 0 + 0 + 0 + \cdots \\ &= 1. \end{align*}
So, in conclusion, we have that
limx0ex1x=1\begin{align*} \lim_{x \rightarrow 0} \frac{e^x - 1}{x} = 1 \end{align*}

Leave a Reply