Proof. If we apply the Bernoulli inequality and let n \rightarrow \infty, then we get
\begin{align*} 1 + x \leq e^x. \end{align*}
\begin{align*} 1 + x \leq e^x \leq \frac{1}{1-x} \end{align*}
\begin{align*} 1 \leq \frac{e^x - 1}{x} \leq \frac{1}{1-x} \end{align*}
Proof. This proof is more of circular reasoning, but still valuable to see how easy it works for in the future. We want to determine the next limit:
\begin{align*} \lim_{x \rightarrow 0} \frac{e^x - 1}{x} \end{align*}
\begin{align*} e^x &= \sum_{n = 0}^{\infty} \frac{x^n}{n!} \\ &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \end{align*}
\begin{align*} e^x - 1 &= \sum_{n = 1}^{\infty} \frac{x^n}{n!} \\ &= x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \end{align*}
\begin{align*} \frac{e^x - 1}{x} &= \sum_{n = 1}^{\infty} \frac{x^{n-1}}{n!} \\ &= 1 + \frac{x}{2!} + \frac{x^2}{3!} + \cdots \end{align*}
\begin{align*} \lim_{x \rightarrow 0} \frac{e^x - 1}{x} &= \lim_{x \rightarrow 0} \sum_{n = 1}^{\infty} \frac{x^{n-1}}{n!} \\ &= \lim_{x \rightarrow 0} (1 + \frac{x}{2!} + \frac{x^2}{3!} + \cdots) \\ &= 1 + \lim_{x \rightarrow 0} (\frac{x}{2!} + \frac{x^2}{3!} + \cdots) \\ &= 1 + 0 + 0 + 0 + \cdots \\ &= 1. \end{align*}
\begin{align*} \lim_{x \rightarrow 0} \frac{e^x - 1}{x} = 1 \end{align*}