You are currently viewing Prove that sec^-1(x) is equal to cos^-1(1/x)
arcsec(x) is equal to arccos(1/x)

Prove that sec^-1(x) is equal to cos^-1(1/x)

We will prove that \sec^{-1}(x) = \cos^{-1}(1/x) for \lvert x \rvert \geq 1.

Proof. We need to take two things into account:
\begin{align*}
\cos^{-1}(x), \quad -1 \leq x \leq 1, 
\end{align*}
and
\begin{align*}
\sec^{-1}(x), \quad \lvert x \rvert \geq 1. 
\end{align*}
Let y = \sec^{-1}(x). Then
\begin{align*}
y = \sec^{-1}(x) &\iff \sec(y) = x \\
&\iff \frac{1}{\cos(y)} = x \quad \text{since } \sec(y) = \frac{1}{\cos(y)} \\
&\iff \cos(y) = \frac{1}{x} \\
&\iff y = \cos^{-1}(1/x).
\end{align*}
Since y = \sec^{-1}(x), we have that \sec^{-1}(x) = \cos^{-1}(1/x) for -1 \leq 1/x \leq 1, which translates to \lvert x \rvert \geq 1

Leave a Reply