You are currently viewing Integral of x/(x^2 + a^2)
integral of x/(x^2 + a^2)

Integral of x/(x^2 + a^2)

What is the integral of x/(x^2 + a^2)?

The integral of \frac{x}{x^2 + a^2} is \frac{1}{2}\ln(x^2 + a^2) + C.

Solution of the integral of x/(x^2 + a^2)

We want to determine the integral of \frac{x}{x^2 + a^2}, i.e.,
\begin{align*}
\int \frac{x}{x^2 + a^2}  dx.
\end{align*}
We will use the substitution method. Let u = x^2 + a^2. Then du = 2xdx \iff \frac{1}{2}du = xdx. So we get the following integral:
\begin{align*}
\int \frac{x}{x^2 + a^2}  dx &= \int \frac{\frac{1}{2}du}{u} \\
&= \frac{1}{2} \int \frac{du}{u} \\
&= \frac{1}{2}\ln \lvert u \rvert + C \\
&= \frac{1}{2}\ln (x^2 + a^2) + C.
\end{align*}

Conclusion

So, the integral of \frac{x}{x^2 + a^2} is \frac{1}{2}\ln(x^2 + a^2) + C.

Leave a Reply