What is the integral of 1/(x^2 – a^2)?
The integral of
\frac{1}{x^2 - a^2} is
\frac{1}{2a}\ln\lvert \frac{x - a}{x + a} \rvert + C.
Solution of the integral 1/(x^2 – a^2)
Solution: We want to determine the next integral:
\begin{align*}
\int \frac{dx}{x^2 - a^2}.
\end{align*}
We will apply an integral technique such that the denominators will be linear functions:
\begin{align*}
\frac{1}{x^2 - a^2} &= \frac{1}{(x-a)(x+a)} \\
&= \frac{A}{x - a} + \frac{B}{x + a} \\
&= \frac{Ax + Aa + Bx - Ba}{x^2 - a^2}.
\end{align*}
We do have the following set of equalities:
\begin{align*}
A + B &= 0 \\
Aa - Ba &= 1.
\end{align*}
We see that
A = -B, and therefore
B = -\frac{1}{2a} and
A = \frac{1}{2a}. Substituting everything above, we get:
\begin{align*}
\int \frac{1}{x^2 - a^2} dx &= \int \frac{A}{x - a} dx + \int \frac{B}{x + a} dx \\
&= \frac{1}{2a} \int \frac{dx}{x - a} - \frac{1}{2a} \int \frac{dx}{x + a} \\
&= \frac{1}{2a} \ln \lvert x - a \rvert - \frac{1}{2a} \ln \lvert x + a \rvert + C \\
&= \frac{1}{2a} \ln \bigg\lvert \frac{x - a}{x + a} \bigg\rvert + C.
\end{align*}
Conclusion
In conclusion, the integral of
\frac{1}{x^2 - a^2} is
\frac{1}{2a}\ln \lvert \frac{x - a}{x + a} \rvert + C, or in mathematical notation:
\begin{equation*}
\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \bigg\lvert \frac{x - a}{x + a} \bigg\rvert + C.
\end{equation*}
You Might Also Like