Proof 1. Let F(x) = \sin^2(x), f(u) = u^2 and g(x) = \sin(x) such that F(x) = f(g(x)). We will use the chain rule:
\begin{align*} F'(x) = f'(g(x))g'(x). \end{align*}
\begin{align*} f'(g(x)) = 2g(x) = 2\sin(x) \quad \text{and} \quad g'(x) = \cos(x). \end{align*}
\begin{align*} F'(x) = f'(g(x))g'(x) = 2\sin(x)\cos(x). \end{align*}
\begin{align*} f'(x) = 2\cos(x)\sin(x). \end{align*}
\begin{align*} \sin^2(x) = \sin(x)\sin(x). \end{align*}
\begin{align*} (\sin(x)\sin(x))' = (\sin(x))'\sin(x) + \sin(x)(\sin(x))'. \end{align*}
\begin{align*} (\sin(x))'\sin(x) + \sin(x)(\sin(x))' = \cos(x)\sin(x) + \sin(x)\cos(x). \end{align*}
\begin{align*} h'(x) &= (\sin(x)\sin(x))' \\ &= (\sin(x))'\sin(x) + \sin(x)(\sin(x))' \\ &= \cos(x)\sin(x) + \sin(x)\cos(x) \\ &= 2\cos(x)\sin(x). \end{align*}