Proof. Let f(x) = \log_a(x). Then
\begin{align*} f'(x) &= \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} \\ &= \lim_{h \rightarrow 0} \frac{\log_a(x + h) - \log_a(x)}{h} \\ &= \lim_{h \rightarrow 0} \frac{\log_a(\frac{x + h}{x})}{h} \\ &= \lim_{h \rightarrow 0} \frac{\log_a(1 + \frac{h}{x})}{h} \end{align*}
\begin{align*} \lim_{h \rightarrow 0} \frac{\frac{1}{x}\log_a(1 + \frac{h}{x})}{\frac{1}{x}h} &= \frac{1}{x}\lim_{h \rightarrow 0} \frac{x}{h}\log_a(1 + h/x) \end{align*}
\begin{align*} \frac{1}{x}\lim_{h \rightarrow 0} \log_a(1 + h/x)^{\frac{x}{h}} = \frac{1}{x} \log_a(\lim_{h \rightarrow 0}(1 + h/x)^{\frac{x}{h}}) \end{align*}
\begin{align*} \frac{1}{x} \log_a(e) \end{align*}
\begin{align*} \frac{1}{x} \log_a(e) &= \frac{1}{x} \frac{\log_e(e)}{\log_e(a)} \\ &= \frac{1}{x} \frac{1}{\ln(a)} \\ &= \frac{1}{x \ln(a)} \end{align*}