You are currently viewing Derivative of log x base a using First Principle of Derivatives
Derivative of log x base a

Derivative of log x base a using First Principle of Derivatives

We will prove the derivative of \log_a(x) using the first principle of derivatives. We will show that the derivative of \log_a(x) is \frac{1}{x\ln(a)}, and we will prove that by the definition of derivative.

Proof. Let f(x) = \log_a(x). Then
\begin{align*}
f'(x) &= \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} \\
&= \lim_{h \rightarrow 0} \frac{\log_a(x + h) - \log_a(x)}{h} \\
&= \lim_{h \rightarrow 0} \frac{\log_a(\frac{x + h}{x})}{h} \\
&= \lim_{h \rightarrow 0} \frac{\log_a(1 + \frac{h}{x})}{h} 
\end{align*}
Now we will multiply the nominator and denominator with \frac{1}{x}:
\begin{align*}
\lim_{h \rightarrow 0} \frac{\frac{1}{x}\log_a(1 + \frac{h}{x})}{\frac{1}{x}h} &= \frac{1}{x}\lim_{h \rightarrow 0} \frac{x}{h}\log_a(1 + h/x) 
\end{align*}
Now we will use the logarithm power rule b \cdot \log_a(x) = \log_a(x^b):
\begin{align*}
\frac{1}{x}\lim_{h \rightarrow 0} \log_a(1 + h/x)^{\frac{x}{h}} = \frac{1}{x} \log_a(\lim_{h \rightarrow 0}(1 + h/x)^{\frac{x}{h}})
\end{align*}
We know that \lim_{h \rightarrow 0} (1 + h/x)^{\frac{x}{h}} = e from this article. So we get
\begin{align*}
\frac{1}{x} \log_a(e) 
\end{align*}
But we are not done. The logarithm base change rule tells us that \log_a(x) = \frac{\log_b(x)}{\log_b(a)}. In our case, we will take b = e. So we get
\begin{align*}
\frac{1}{x} \log_a(e) &= \frac{1}{x} \frac{\log_e(e)}{\log_e(a)} \\
&= \frac{1}{x} \frac{1}{\ln(a)} \\
&= \frac{1}{x \ln(a)}
\end{align*}
because \log_e = \ln. So our desired result is f'(x) = \frac{1}{x\ln(a)}.

Leave a Reply